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Abstract: Energy efficiency can be obtained by measuring accurate new surface energy in the crushing 
process. For the calculation of new surface energy, most researchers only pay attention to particle size 
distribution and ignore the influence of particle shape and roughness on the surface area. In this paper, 
the image processing technology was used to calculate the shape parameters and surface fractal 
dimension of the crushed granite sample. According to the different combinations of particle shape and 
roughness, the new surface area corresponding to the four basic models was calculated. For the surface 
area of a single particle, the calculation result of the rough model considering the surface fractal 
dimension is higher than that of the smooth model. Moreover, the ratio of the calculation results of the 
rough model and the smooth model increases significantly as the particle size increases. For 0.1 mm 
particles, the area ratio of the two models is 8, but for 25 mm particles, the area ratio reaches 130. In 
contrast, the particle shape is a secondary factor that affects the surface area calculation. The ellipsoidal 
model considering the particle shape has a surface area 30% larger than the spherical model. If the 
roughness and particle shape are considered when calculating the surface area, the energy efficiency of 
crushing is higher. 

Keywords:  crushing, surface area, particle shape, surface fractal dimension, calculation model, energy 
efficiency 

1.  Introduction 

The energy consumption in the crushing process is enormous. The accurate calculation of energy 
efficiency can provide a basis for objective evaluation of crushing energy consumption. At the same 
time, it will lay a foundation for further research on the law of energy evolution in the crushing process. 
Accurate calculation of new surface energy (NSE)in the process of ore crushing is the key to obtain 
energy efficiency. The two factors that affect the NSE calculation are the new surface area (NSA) and 
surface free energy (SFE) (Sudarshan, 2016). The simplified method for calculating the NSA assumes 
that the crushed product is spherical particles, and the NSA is calculated according to the particle size 
distribution (PSD) before and after crushing (Hou et al., 2017; Jiang et al., 2013; Wang and Arson, 2018; 
Zhang et al., 2016). Although the spherical particle assumption makes the calculation of the surface area 
easier, it ignores the effect of particle shape and surface roughness on the actual surface area. Besides, 
when measuring the PSD of the coarse particles, a standard sieve is usually used. In general, the lower 
limit of the particle size for dry sieving using a standard sieve is 0.074 mm (Chen et al., 2012). Therefore, 
the PSD of particles smaller than this size cannot be obtained.  

It is generally believed that the SFE is a constant related to the properties of the material, which can 
be estimated based on the fracture toughness, measured by contact angle experiments and scanning 
force microscopy (Calvimontes, 2017; Russell and Einav, 2013; Sauerer et al., 2016; Xie et al., 2015). 
However, in the field of geotechnical mechanics, to avoid the measurement of parameters that are not 
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easy to obtain, such as roughness, some scholars have calculated the energy dissipation indirectly by 
defining the fracture surface energy (Russell and Einav, 2013; Wang et al., 2020). The mineral processing 
field pays much attention to the energy efficiency of direct calculation. Therefore, this paper uses the 
contact angle method to obtain the SFE and calculate the NSE, although this method is sophisticated in 
operation.  

To accurately calculate the NSE of the ore crushing process, particle shape and surface roughness 
should be considered. Moreover, it is necessary to calculate the particle size distribution of the full 
particle range. Li et al. (2010) measured the characteristics of rock burst debris, including the mass, 
length, width, and thickness of debris, and summarized the effective methods for measuring the mass 
and PSD of debris in different particle size ranges. For particles smaller than 0.074 mm, a laser particle 
size analyser was used to obtain PSD (Brown, 1985). Heywood (1947) established a method for 
measuring and evaluating the shape of crushed stone particles. The above studies provide methods for 
measuring particle shape, the relationship between particle shape and particle size.  

In addition, the surface roughness of minerals is another important factor affecting the surface area. 
At present, the results of the gas adsorption method are relatively more accurate. However, limited by 
the size of the instrument, the optimal particle size range measured by the adsorption method is usually 
below 1 mm (Wang et al., 2020). Therefore, this method cannot measure the surface area of large 
particles. The application of fractal theory in characterizing roughness can make up for the limitation of 
the adsorption method for the measurement of larger particles.  

Zhou and Xie (2003) used a laser profilometer to obtain the roughness data of the sandstone section 
to further determine the fractal dimension of the fracture surface. Xu and Sun (2005) used the image 
method to measure the surface fractal dimension and to characterize the roughness. Li et al. (2009) 
calculated the surface area of the rock material according to the product surface fractal dimension. 
Yanrong and Runqiu (2015) used various methods to measure the fractal dimension of rock fractures 
and studied its relationship with the joint roughness coefficient. Early research used the method of 
adding 1 to the perimeter fractal dimension (PFD) of the rough surface to approximate the surface fractal 
dimension (SFD) of the entire particle surface (Mandelbrot et al., 1984). In recent years, due to the 
development of scanning imaging equipment and the SFD calculation methods, direct measurement of 
rough surfaces has matured (Zhuang et al., 2005). Although direct analysis and measurement of rough 
surfaces can more fully characterize the surface fractal characteristics of particles, the testing process is 
tedious. In the face of a large number of samples, two-dimensional images are often used to study the 
surface fractal characteristics of particles (Li et al., 2019; Li and Huang, 2015). 

In this study, the full size of the crushed particle was collected and analysed. The PSD of particles 
smaller than 0.3mm was measured by a laser particle size analyzer, and particles larger than 0.3mm 
were analyzed by a standard sieve. The contact angle method was used to measure the SFE of the 
granite. The data of the particle shape and the SFD were obtained by the image method. The variation 
law of the particle shape and the SFD of each size at different loading rates was studied. According to 
the combination of shape and roughness that affect the surface area of particles, surface area algorithms 
were divided into four categories. The differences in NSA calculated by different algorithms were 
compared, and the results were analyzed.  

2. Fractal theory 

The fractal dimension was first proposed by Hausdorff (1918) (also called Hausdorff dimension). Later, 
Mandelbrot (1975) generalized fractal dimension to form fractal geometry, which was used to deal with 
those extremely irregular shapes. In classical geometry, points are zero-dimensional, any curve is one-
dimensional, and any curved surface is two-dimensional. This dimension takes only integer values, 
which is the dimension in the topological sense, called topological dimension 𝐷" . The topological 
dimension reflects the number of independent coordinates or the number of independent directions 
required to determine the position of a point in space. The definition of a fractal is: if the Haudroff 
dimension of a set is strictly greater than its topological dimension 𝐷", then the set is fractal, and fractal 
is a measure of the irregularity of graphics (Xie, 1996). 

There are many fractal boundaries and fractal objects in nature. For example, the degree of 
irregularity in oceanic coastlines and in vertical sections of the Earth, the rough surface of crushed 
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minerals. For any smooth curve in Euclidean space, when measured with a yardstick ε, the following 
relationship can always be obtained: 

𝐿 = 𝑁 · 𝜀 = Constant                                                                    (1) 
where N is the number of measurements of yardstick ε required to measure L (length). The shape of 
many natural objects such as the length of the coastline and the length of the mineral profile lines are 
irregular and rough, and there is no such measurement relationship. In fact, the measured length can 
be approximated as:  

𝐿(𝜀) = 𝐿0(𝜀 𝐿0⁄ )234                                                                   (2) 
where 𝐿0 is a constant, and D is the fractal dimension of the curve. Generally, for a fractal curve D> 1, 
then: 

lim
8→0

𝐿(8) = 𝐿0 lim8→0(𝜀 𝐿0⁄ )234 = ∞                                                        (3) 

It shows that the length of the curve tends to infinite as the length of the yardstick approaches zero. If ε 
does not tend to zero, then: 

;
;<
𝐿(8) = (1 − 𝐷)(𝜀 𝐿0⁄ )34 < 0                                                         (4) 

This indicates that 𝐿(8) increases as the size ε decreases. 
The fractal dimension D can describe the "roughness" of the curve (Lee et al., 1990). The larger D is, 

the more flexed and irregular the curve is; the smaller D is, the smoother the curve is. In other words, 
the fractal dimension D can quantitatively characterize the irregularity of the surface. The measurement 
equation of the fractal curve is extended to the multi-dimensional case, where n is the Euclidean 
dimension, and Eq. (2) can be generalized as: 

𝐺(𝜀) = 𝐺0(𝛿 𝛿CDE⁄ )F34                                                                (5) 
Eq. (5) is suitable for measuring the fractal curve, fractal area, and fractal volume. Where n is Euclidean 
dimension, when n = 1, G and δ correspond to length; when n = 2, G and δ correspond to area and length; 
when n = 3, G and δ correspond to volume and length (Li and Deng, 1995). Therefore, the fractal surface 
area can be expressed as: 

𝑆 = 𝑆0(𝛿CHF 𝑥⁄ )J34K                                                                      (6) 
where 𝐷L is the SFD; x is the particle size; 𝛿CHF is the minimum yardstick length used to measure the 
fractal area; 𝑆0  is the surface area of smooth particles. That is, 𝑆0 = 𝑘N𝑥J , and 𝑘N is the surface shape 
factor, Eq. (6) shows that when the particle surface is smoother, 𝐷L → 2.0, and Eq. (6) is reduced to the 
classic surface area formula. The real mineral surface has a rich uneven structure, and the SFD can be 
used to characterize this fine structure. 

3. Materials and methods  

3.1. Material preparation   

The granite used in the experiment was collected from Queshan of Henan in China. The granite was 
processed into a standard specimen with a 50 mm diameter and a height of 100 mm (Fig. 1). The two 
ends of the specimen were carefully ground with a grinder and sandpaper to make its parallelism, 
flatness, and perpendicularity meet the test requirements. The physical and mechanical parameters of 
the specimen are shown in Table 1. These parameters are determined in accordance with national 
standards, and at least three parallel tests were performed for each measurement. 

3.2. Experimental device and particle size analysis method 

The TAW-3000 hydraulic servo test system (Fig. 2a) was used to complete the uniaxial compression test 
of the granite specimen. The test system has a portal frame with a stiffness greater than 5 GN/m and 
can provide an axial force of 3000 kN. Five different loading rates (1 kN/s, 2 kN/s, 3 kN/s, 4 kN/s and 
5 kN/s) were selected. Fig. 3 showed the maximum load corresponding to each loading rate. Three 
specimens were tested at the same conditions. A series of standard sieves (Fig. 2b) with specifications 
from 0.3 mm to 30 mm were selected to screen 15 groups of crushed products. The products were 
divided  into -100+30 mm,  -30+20 mm, -20+13 mm,  -13+6 mm,  -6+3 mm,  -3+1 mm, -1+0.5 mm, -0.5+0.3  



262 Physicochem. Probl. Miner. Process., 57(1), 2021, 259-272 
 

Table 1. Physical and mechanical parameters of granite specimen 

Density/Qg/cm3R Elasticity modulus /GPa Poisson's ratio  Compressive strength /MPa 
2.67 27.68 0.26 110.53 

 
Fig. 1. Granite specimens 

 
Fig. 2. Crushing and sieving of test specimens 

 
Fig. 3. Maximum load of different loading rate 
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mm, and -0.3 mm total 9 sizes (Fig. 2c). The EW-300A (accuracy is ± 0.0001 g) electronic balance was 
used to weigh the sieved products of each size, and the relative value of the weight loss of the products 
after sieving was less than 0.5%. The Malvern-MasterSizer 2000 laser particle size analyzer was used to 
measure the PSD of particles smaller than 0.3 mm. 

3.3. Measurement of surface free energy 

The granite was cut into cylindrical specimens with a diameter of 50 mm and a thickness of 10 mm using 
a cutting machine. The specimen surface was polished with 80 mesh, 120 mesh, 200 mesh, 500 mesh, 
and 1000 mesh sandpaper and then polished with a polishing machine. The contact angle of distilled 
water, formamide, diiodomethane, and the granite surface was measured by JY-82B video contact angle 
measuring instrument at room temperature (20 ℃). Each experiment was measured 4 to 5 times, and 
then the average value was calculated (Table 2). According to the van Oss-Chaudhury-Good equation 
(Van Oss et al., 1988), the calculated SFE of granite is 58.996 mJ/m2. 

Table 2. Measurement results of granite contact angle at 20℃ 

3.4. Measurement of particle shape and surface fractal dimension 

There were many indexes for evaluating the two-dimensional shape parameters of particles (Singh and 
Ramakrishnan, 1996). In this paper, three particle shape parameters elongation, flatness, and roundness 
were selected. The definitions of elongation, flatness, and roundness are shown in Table 3. The 
schematic diagram is shown in Fig. 4, where L, B, T stand for the length, breadth, and thickness of the 
particles. All three dimensions are normal to each other, measured at the particle in a stable position on 
a flat ground. A and P respectively represent the projected area and perimeter of the particles. Among 
the above particle shape parameters, elongation and flatness are values greater than or equal to 1, and 
roundness is less than or equal to 1.  

Table 3. Shape parameters of crushed particles 

Parameter name Definition 
Elongation (Heywood, 1947) 𝐸𝑙 = 𝐿 𝐵⁄  

Flatness (Heywood, 1947) 𝐹𝑙 = 𝐵 𝑇⁄  
Roundness (Wadell, 1932) 𝑆 = 4𝐴 𝜋𝐿J⁄  

 

 
Fig. 4. Definition of shape parameters 

Within the range that the camera resolution meets, the particles of four sizes (-100+30 mm, -30+20 
mm, -20+13 mm, and -13+6 mm) were studied. Concerning the three-dimensional shape characteristic 
measurement system of particles (Li et al., 2019), a measurement system for the particle shape and SFD 

Sample 
Contact angle θ/(°) 

Distilled water Formamide Diiodomethane 
Granite 137.2±2.0° 77.4±0.5° 11.1±0.3° 
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of particles was designed (Fig. 5). The system consists of two support plates, a lighting system, and two 
cameras. A black calibration object of known size was placed on the support plate. A lighting system 
was installed on the bottom and sides of the device to eliminate shadows during image acquisition. 
Cameras were both fixed on the top and the side of the support plate to collect the particles’ projected 
image from the vertical direction. The measurement process can be divided into the following steps. 
First, dye the particles into black with diluted ink and dry. Then, Place the particles on the support plate 
one by one according to the particle size, and take high-definition images with the camera system. 
Finally, import the image into Imagepro Plus to calculate the shape parameters and import it into 
MATLAB and use FracLab toolbox to get the PFD. The projected images of the particles are shown in 
Fig. 6. 

 
Fig. 5. Particle shape and fractal dimension measurement system 

 
Fig. 6. Projection diagram of particles 

4. Research results and discussion 

4.1. The shape-size characteristics of crushed particles 

The crushed particles were divided into five groups according to the loading rate. Each group contains 
12 test specimens. The number and mass distribution data of the first group are shown in Table 4. 
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Table 4. Quantity and mass distribution of crushed products 

Particle size /mm Quantity / Block Mass/g Quantity percentage /% Mass percentage /% 
-100+30 31 3302.10 4.18 54.14 
-30+20 57 1635.40 7.68 26.83 
-20+13 65 564.92 8.76 9.26 
-13+6 589 595.42 79.38 9.76 
Total 742 6096.84 100 100 

According to the calculation results in section 3.4, box plots of the elongation, flatness, and roundness 
of crushed particles with particle size under different loading rates are drawn, as shown in Figs. 7, 8, 
and 9. 

Fig. 7 shows that the El of particles with a particle size range of -13+6 mm at different loading rates 
was not much different, around 2.5. For particles with a size range of -20+13 mm, lower loading rates 
the El was about 2.7, which was greater than the corresponding El of 2.0 at high-speed loading. For the 
-30+20 mm particles, the El was about 2~2.5. For the -100+30 mm particles, due to the size limitation of 
the specimen, and the median El was in the range of 1 ~ 2 

Statistics show that the loading rate has little effect on the El from 6 to 13 mm, and the relationship 
between the El of the particles larger than 13 mm and the loading rate does not show regularity. For the 
quasi-static loading rate (1~5 kN/s) uniaxial compression experiment, the El of most of the particles 
falls within the range of 2~3. Liu et al. (2019) studied the length-width ratio of 4 grades of crushed stone 
particles of -5+2, -10+5, -20+10, -40+20 mm after the mechanical crushing of natural pebbles. The results 
show that the average El varies little with the size. The El of the crushed product has little correlation 
with the particle size, and the factors affecting the El may be the rock composition and the crushing 
method.  

 
Fig. 7. Relationship between elongation and particle size at different loading rates 

As shown in Fig. 8 that the Fl of the particles produced by different loading rates does not differ 
much, and the Fl and the particle size do not show a correlation. The Fl mostly falls within the range of 
1.5~3.5. Compared with particles of other sizes, the Fl dispersion of particles larger than 30 mm is 
smaller, which may be caused by the size limitation of the test specimen. Similarly, in the study of 
morphology after crushing of coarse and fine aggregates, Rajan and Singh (2018) found that the 
difference in Fl of particles with different sizes produced by the same crushing method was not 
significant. 

It can be seen from Fig. 9 that for the roundness of particles of 6 ~ 13 mm, the loading rate has little 
effect on it. The roundness range is mainly 0.77 ~ 0.86, and the median is 0.82. For particles of 13 ~ 20 
mm the roundness  at a  loading rate of  3 kN/s is  higher,  with a  median  of 0.83,  and the other loading  
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Fig. 8. Relationship between flatness and granularity at different loading rates 

 
Fig. 9. Relationship between roundness and granularity at different loading rates 

rates correspond to a median of 0.8 to 0.82. For particles of 20 ~ 30 mm, the median roundness falls 
within the range of 0.81 ~ 0.85. The roundness of particles bigger than 30 mm mainly distributed in the 
interval of 0.83~0.87. Similarly, in the study of the roundness of 9.5~62.5 mm (full size) grain granite, 
Pen et al. (2013) found that the discrepancy of roundness of different sizes are slight, and the roundness 
coefficient is between 0.8 and 0.98.  

4.2. The surface fractal dimension and size characteristics of crushed particles 

As shown in Fig. 10, the PFD of the crushed particles has a positive correlation with the particle size, 
while it is not much affected by the loading rate. It is observed that the PFD of particles in -13+6 mm is 
1.79~1.81; the PFD of particles in -20+13 mm is 1.80~1.82; the PFD of particles in -30+20 is 1.81~1.83; the 
PFD of particles larger than 30 mm is 1.82~1.85. At present, the research on the relationship between 
the fractal dimension of crushed particles and particle size is not comprehensive enough. Researchers 
usually use a method to measure particles’ fractal dimension in a specified particle size range of a 
specific mineral. Therefore, the conclusions drawn have certain limitations. Li et al. (1997) used the 
divider method to measure the fractal dimension of the periphery of -0.9+0.074 mm particles. They 
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found that the average value of PFD decreased with the increase of particles, that is, fine-grained 
minerals have complex surfaces. Lin et al. (2020) used the box dimension method to study the fractal 
dimension of the crystal profile of gypsum broken in different ways. The results showed that the fractal 
dimension was between 1.79 and 1.96. Ge et al. (2014) found that the fractal dimension of the profile 
was 1.09~1.14 when using a laser scanning method to study the roughness of natural rock joints. Given 
the above research results, it is still impossible to determine the relationship between the surface fractal 
dimension and the particle size of the broken rock. In theory, the surface fractal dimension can range 
from 2.0 to 3.0 (Giorgio and Daniele, 2007). 

 
Fig. 10. The relationship between PFD and particle size at different loading rates 

4.3. Comparison of different new surface area algorithms  

The surface area calculation algorithms can be divided into four types according to the differences in 
the factors that affect the particle surface area. They are the smooth sphere (SS) model, smooth ellipsoid 
(SE) model, rough sphere (RS) model, and rough ellipsoid (RE) model, as shown in Fig. 11. In the SS 
Model, the surface area of a single particle is the surface area of a sphere of the same mass. In the SE 
Model, it is necessary to use the elongation and flatness indicators obtained in 4.1 to calculate the surface 
area of the ellipsoid with the same mass. The RS Model considers the influence of roughness on the 
surface area based on a smooth sphere.  

 
Fig. 11. Different calculation models of particle surface area 
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Given the current controversy on the relationship between fractal dimension and particle size, and 
the surface fractal dimension ranges from 2.0 to 3.0 in theory. In this calculation, a total of 5 fractal 
dimensions are selected, that is 2.1, 2.3, 2.5, 2.7, and 2.9. Then, calculate the particle surface area by Eq. 
(5). The minimum particle size interval measured in this experiment was -4+2 µm, so the equivalent 
diameter of the particle in this interval was selected as the minimum yardstick length 𝛿CHF  for 
measuring the fractal surface area (Ji et al., 2009). The RE Model is based on the SE Model considering 
the effect of roughness, the selection and calculation method of fractal dimension are consistent with 
the RS Model. According to the algorithms mentioned above and the PSD data of the No. 5 test 
specimen, the single particles of each particle size and the total area were calculated, and the area-size 
distribution diagrams are drawn (Figs. 12 and 14). The PSD data is shown in Tables 6 and 7. 

Table 6. Test specimen No.5 PSD data of crushed products (using sieve method) 

Size range /mm Total mass /g Number of particles Single particle mass/g 
-100+30 305.573 3 101.877 
-30+20 71.101 4 17.775 
-20+13 41.062 6 6.844 
-13+6 40.410 38 1.063 
-6+3 18.483 233 0.079 
-3+1 17.839 997 0.018 

-1+0.5 12.672 8361 0.0015 
-0.5+0.3 5.434 54246 0.0001 

Table 7. Test specimen No.5 PSD data of crushed products (using laser diffraction particle size analyzer) 

Size range /µm Total mass /mg Number of particles (103) Single particle mass/ng 
-256+128 2516.33 305.554 8230 
-128+64 1734.17 1572.545 1100 
-64+32 766.64 5095.74 150 
-32+16 237.75 12412.7 19 
-16+8 78.12 33702.3 2.3 
-8+4 44.96 174258 2.58×10-1 
-4+2 36.82 1173215 3.14×10-2 

The left axis of Fig. 12 represents the surface area of a single particle, and the right axis is the surface 
ratio between different calculation models. For convenience, the simplest SS Model was used as a 
benchmark for comparison. As shown in Fig. 12 that the surface area-particle size curve of the SS Model 
and the SE Model are relatively close. Similarly, the surface area-particle size curve of the RS Model and 
the RE Model are relatively close. However, for the same particle shape, the rough model was different 
from the smooth model. To some extent, the fractal dimension had a more significant influence on the 
surface area calculation results. Besides, the area ratio of the right axis indicates that the area ratio of 
large particles is significantly larger than that of small particles when considering the SFD. For particles 
with a size of 100 µm, the surface area calculated by the RE Model is ten times that of the SS Model. For 
particles with a size of 20 mm, the ratio of the surface area calculated by the RE Model to the SS Model 
is close to 150. However, the area ratio of each particle size of the SE Model to the SS Model is a constant, 
which is consistent with the elongation and flatness selected by the calculation model. The elongation 
and flatness of this ellipsoid model are both 2.5; therefore, the corresponding surface area ratio 
coefficient is 1.3.   

To avoid the curve in Fig. 12 from being too confusing, the SFD selected by the rough model was 2.5. 
Fig. 13a shows the area-size distribution of single particles under different SFD of the RS Model. It can 
be found that the larger the SFD, the larger the surface area. To facilitate the comparison of the influence 
of different SFD on the surface area, the area ratio of the RS Model to the SS Model under different SFD 
is calculated (Fig. 13b). Fig. 13b shows that the area of a -6+3 mm particle with a fractal dimension of 
2.9 is that of a particle with a fractal dimension of 2.0 (smooth particle) 1000 times. Obviously, with the 
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increase of the fractal dimension, the fractal dimension gradually becomes the main factor affecting the 
surface area calculation, and its influence is far more significant than the particle shape. Since it is 
currently impossible to obtain the value of the full-grain fractal dimension, the following calculation 
uses the fractal dimension 2.5 as the calculation standard. 

 
Fig. 12. Single particle surface area-size distribution 

 
Fig. 13. Single particle surface area -size distribution with different SFD 

According to the single particle surface area and the number of particles of each size, the total surface 
area-particle size distribution can be obtained (Fig. 14). The left axis of the Fig. 14a is the total surface 
area of all particles in the corresponding size, and the right axis is the number of particles. The total 
surface area of different calculation models shows different trends with the change of particle size. Since 
the total surface area calculated by the smooth model is small, the changing trend cannot be clearly 
observed in Fig. 14a, so it is listed separately in Fig. 14b. Because the particle shape has little influence 
on the area calculation, and the particle shape parameter does not change with the size in the algorithm. 
Only the influence of roughness on the results is discussed here. As shown in Fig. 14a, the difference 
between the smooth model and the rough model is not obvious for particles smaller than 10 µm. In the 
rough model, from 10 to 1000 µm, the total surface area of each particle size increases with the increase 
of particle size. In the range of -20+1 mm, the total surface area fluctuates slightly around 1 m2. The total 
surface area of particles larger than 30 mm rises suddenly, and the area of the RE Model exceeds 3.5 m2. 
There is a peak at 100 µm, and the corresponding area is 0.055 m2, much less than 3.5 m2 of the rough 
model (Fig. 14b). 

To conveniently compare the contribution of the surface area of each particle size to the overall 
surface area, the ratio of the surface area of each particle size is obtained (Fig. 15). In the smooth model, 
100 µm size particles contribute the most to the total surface area, with a contribution rate of 14%. While 
in the rough model, particles larger than 30 mm contribute the most to the total surface area, exceeding 
30% of the total surface area. Besides, the SS Model and SE Model area ratio curves, the RS Model and 
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RE Model area ratio curves coincide. This phenomenon is caused by the fact that the particle shape 
parameter does not change with the size in the algorithm, that is, the particle shape parameter does not 
change the proportion of each particle size contribution to the surface area. 

 
Fig. 14. Total surface area-size distribution 

 
Fig. 15. Contribution ratio of surface area contribution of each model in different models 

The total surface area of the particles calculated by the four models: SS Model, SE Model, RS Model 
(SFD 2.5), and RE Model (SFD 2.5) are shown in Table 8. The surface energy is 58.996 mJ/m2. It is easy 
to calculate NSE. As shown in the table, when the particle shape is the same, the NSE of the rough model 
is 27 times that of the smooth model. In the same roughness, the NSE of the ellipsoid model is 1.3 times 
that of the sphere model.  

Table 8. Surface area and NSE of different model 

Model Surface area / m2 NSE / mJ 
SS Model 0.32 19.05 
SE Model 0.41 24.76 

RS Model (SFD 2.5) 8.73 523.86 
RE Model (SFD 2.5) 11.35 681.01 

5. Conclusions 

This paper used the image method to study the relationship between the shape and roughness of the 
crushed granite product and the product size and loading rate. The differences between the four 
different new surface area algorithms were compared. 

The loading rate of the granite uniaxial compression process and the product size had no significant 
influence on the particle shape. The SFD was not greatly affected by the loading rate. In the range of -
100+6 mm, the fractal dimension of the particle surface increased with the increase of particle size. 
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The rough model was more significantly different from the smooth model when calculating the 
surface area of large particles. For 10 µm particles, the calculation result of the rough model was four 
times that of the smooth model, while for the 20 mm particles, the difference was 140 times. Therefore, 
large particles contributed more to the total surface area in the rough model.  

If the particle shape and roughness are considered when calculating the particle surface area, higher 
energy efficiency will be obtained. In addition, roughness has a more significant effect on the surface 
area than particle shape. When the particle shape was the same, the NSE of the rough model was 27 
times that of the smooth model; when the roughness was the same, the NSE of the ellipsoid model was 
1.3 times that of the sphere model.  

To make the calculation results more accurate, it is necessary to systematically measure the SFD of 
each size of the crushed product. 

Acknowledgments 

The financial support from National Natural Science Foundation of China (Grant No. 52074308) and 
Shenhua Ningxia Coal Industry Group Co., Ltd. Taixi Coal Preparation Plant,Shi zuishan Ningxia 
753000,China. 

List of symbols 

NSE New surface energy 
NSA New surface area 
SFE Surface free energy 
PSD Particle size distribution 
PFD Perimeter fractal dimension 
SFD Surface fractal dimension 
SS Smooth sphere 
SE Smooth ellipsoid 
RS Rough sphere 
RE Rough ellipsoid 

References 

BROWN, D. J., 1985. Direct measurement of concentration and size for particles of different shapes using laser light 
diffraction. Chem.eng.res.des 63, 125-132. 

CALVIMONTES, A., 2017. The measurement of the surface energy of solids using a laboratory drop tower. Npj 
Microgravity 3 

CHEN, X., WANG, S. Z. ,LI, L., 2012. Characcterstics of fragments of jointed rock mass model under uniaxial compression. 
Chinese Journal of Rock Mechanics and Engineering 31, 898-907. 

GE, Y. F., KULATILAKE, P. H. S. W., TANG, H. M. ,XIONG, C. R., 2014. Investigation of natural rock joint roughness. 
Computers and Geotechnics 55, 290-305. 

GIORGIO, F. ,DANIELE, R., 2007. SCATTERING, NATURAL SURFACES, AND FRACTALS. London, Academic 
Press. 

HAUSDORFF, F., 1918. Dimension und äußeres Maß. Mathematische Annalen 79, 157-179. 
HEYWOOD, H., 1947. Symposium on particle size analysis. Trans. Inst. Chern. Eng, 14. 
HOU, T. X., XU, Q., XIE, H. Q., XU, N. W. ,ZHOU, J. W., 2017. An estimation model for the fragmentation properties of 

brittle rock block due to the impacts against an obstruction. Journal of Mountain Science 14, 1161–1173. 
JI, T., HU, C. B. ,LI, X. J., 2009. Simplified calculation method of specific surface area of coarse aggregate based on fractal 

theory. Concrete, 27-28. 
JIANG, H. X., DU, C. L. ,LIU, S. Y., 2013. The effects of impact velocity on energy and size distribution of rock crushing. 

JOURNAL OF CHINA COAL SOCIETY 38, 604-609. 
LEE, Y. H., CARR, J. R., BARR, D. J. ,HAAS, C. J., 1990. The fractal dimension as a measure of the roughness of rock 

discontinuity profiles. International Journal of Rock Mechanics Mining Sciences & Geomechanics Abstracts 27, 
453-464. 



272 Physicochem. Probl. Miner. Process., 57(1), 2021, 259-272 
 

LI, D. J., JIA, X. N., MIAO, J. L., HE, M. C. ,LI, D. D., 2010. Analysis of fractal characteristics of fragment from rockburst 
test of granite. Chinese Journal of Rock Mechanics and Engineering 29, 3280-3289. 

LI, G. B., CHEN, Q. S. ,XU, X. H., 1997. Fractal in Rock Fracture. BeiJing, Seismological Press. 
LI, G. Q. ,DENG, X. J., 1995. Fractal effect of graded aggregate. Concrete 1, 3~7. 
LI, L. Y., JU, Y., ZHAO, Z. W., WANG, L., LU, J. ,MA, X., 2009. Energy analysis of rock structure under static and 

dyanmic loading conditions. JOURNAL OF CHINA COAL SOCIETY 34, 737-740. 
LI, R. Z., LU, W. B., YIN, Y. J., YU, Y. J., CHEN, M., XIA, W. J. ,YAN, P., 2019. Study on the shape and specific surface 

area characteristics of blasting gravel particles of limestone in Hangudi quarry of Baihetan. Chinese Journal of Rock 
Mechanics and Engineering 38, 1344-1354. 

LI, Y. R. ,HUANG, R. Q., 2015. Relationship between joint roughness coefficient and fractal dimension of rock fracture 
surfaces. International Journal of Rock Mechanics Mining Sciences 75, 15-22. 

LIN, M. Q., ZHANG, L., LIU, X. Q., XIA, Y. Y., HE, J. Q. ,KE, X. S., 2020. The Meso-Analysis of the Rock-Burst Debris 
of Rock Similar Material Based on SEM. Advances in Civil Engineering 2020, 1~13. 

LIU, G., ZHAO, M. Z., LU, R., LUO, Q. ,LU, C., 2019. Morphology characteristics of gravel particle and its relationship 
with stacking void ratio. Rock and Soil Mechanics 40, 4644-4651. 

MANDELBROT, B. B., 1975. Stochastic models for the Earth's relief, the shape and the fractal dimension of the coastlines, 
and the number-area rule for islands. Proceedings of the National Academy of Ences of the United States of America 
72, 3825-3828. 

MANDELBROT, B. B., PASSOJA, D. E. ,PAULLAY, A. J., 1984. Fractal character of fracture surfaces of metals. Nature 
308, 721-722. 

PEN, L. M. L., POWRIE, W., ZERVOS, A., AHMED, S. ,AINGARAN, S., 2013. Dependence of shape on particle size for 
a crushed rock railway ballast. Granular Matter 15, 849-861. 

RAJAN, B. ,SINGH, D., 2018. Investigation on effects of different crushing stages on morphology of coarse and fine 
aggregates. International Journal of Pavement Engineering 21, 177-195. 

RUSSELL, A. R. ,EINAV, I., 2013. Energy dissipation from particulate systems undergoing a single particle crushing event. 
Granular Matter 15, 299-314. 

SAUERER, B., STUKAN, M., ABDALLAH, W., DERKANI, M. H., FEDOROV, M., BUITING, J. ,ZHANG, Z. J., 2016. 
Quantifying mineral surface energy by scanning force microscopy. Journal of Colloid Interface Science 472, 237-246. 

SINGH, P. ,RAMAKRISHNAN, P., 1996. Powder Characterization by Particle Shape Assessment. KONA 14, 16-30. 
SUDARSHAN, M., 2016. Size–energy relationship in comminution, incorporating scaling laws and heat. International 

Journal of Mineral Processing 153, 29-43. 
VAN OSS, C. J., GOOD, R. J. ,CHAUDHURY, M. K., 1988. Additive and nonadditive surface tension components and the 

interpretation of contact angles. Langmuir 4, 884-891. 
WADELL, H., 1932. Volume, Shape, and Roundness of Rock Particles. The Journal of Geology, 443-451. 
WANG, C. H., CHENG, Y. P., YI, M. H., HU, B. ,JIANG, Z. N., 2020. Surface energy of coal particles under quasi-static 

compression and dynamic impact based on fractal theory. Fuel 264, 1-12. 
WANG, P. ,ARSON, C., 2018. Energy distribution during the quasi-static confined comminution of granular materials. 

Acta Geotechnica 13, 1-9. 
XIE, H. P., 1996. Fractal: An Introduction to Rock Mechanics. BeiJing, Science Press. 
XIE, Y. J., WANG, X. H., HU, X. Z. ,ZHU, X. Z., 2015. Fracture-based model of periodic-arrayed indentation for rock 

cutting. International Journal of Rock Mechanics Mining Sciences 76, 217-221. 
XU, Y. F. ,SUN, D. A., 2005. Correlation of surface fractal dimension with frictional angle at critical state of sands. 

Geotechnique 55, 691-695. 
YANRONG, L. ,RUNQIU, H., 2015. Relationship between joint roughness coefficient and fractal dimension of rock fracture 

surfaces. International Journal of Rock Mechanics Mining Sciences 75, 15-22. 
ZHANG, C. S., NGUYEN, G. D. ,KODIKARA, J., 2016. An application of breakage mechanics for predicting energy–size 

reduction relationships in comminution. Powder technology 287, 121–130. 
ZHOU, H. W. ,XIE, H. P., 2003. Direct Estimation of the Fractal Dimensions of a Fracture Surface of Rock. Surface Review 

Letters 10, 751-762. 
ZHUANG, Y. H., ZHOU, H. W. ,XIE, H. P., 2005. Improved cubic covering method for fractal dimensions of a fracture 

surface of rock. Chinese Journal of Rock Mechanics and Engineering 24, 3192-3196. 

 


